Math 252, Advanced Calculus II
 First Midterm Exam

March 19, 2019
Name: \qquad
Number:

Question:	1	2	3	4	5	Total
Grade:						
Out of:	22	18	18	22	20	100

Question 1. Consider the following equations

$$
\begin{cases}F: & 4 x-5 y+z^{3}-3 u+v^{2}=0 \\ G: & x^{2}+2 y^{2}+z+u^{2}-2 v+3 w=6 \\ H: & 2 x^{3}+4 z^{2}+w-u^{2}+v^{2}=9\end{cases}
$$

a) Show that near the point $p_{0}=(x, y, z, u, v, w)=(2,0,0,0,1,-1)$, we can solve u, v, w uniquely as functions of x, y, z.
b)Compute $\frac{\partial u}{\partial x}$ at the point p_{0}. (Hint: Use Implicit function Theorem).

Question 2. Write the integral $\int_{0}^{2} \int_{0}^{2} f\left(\sqrt{x^{2}+y^{2}}\right) d x d y$ in polar coordinates.

Question 3. Using transformation $u=x y$ and $v=x y^{3}$, find the area of the region R in the first quadrant bounded by the curves $x y=2, x y=4, x y^{3}=3$ and $x y^{3}=6$.

Question 4. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; T(x, y, z)=(u, v, w)$ with

$$
\left\{\begin{array}{l}
u(x, y, z)=x y z+c y^{2} \\
v(x, y, z)=y z^{2}-3 x \\
w(x, y, z)=4 x y+6 y+z^{3}
\end{array}\right.
$$

a) Find $D T(1,1,1)$.
b) For which values of c can the system of equations be solved for x, y, z as functions of u, v, w near $(1,1,1)$?
b) Find $\frac{\partial y}{\partial v}$ at the point $(1,1,1)$.

Question 5. What is the work done $\int_{C} \vec{F} . d \vec{r}$ by moving in the force field

$$
F(x, y)=\left(2 x^{3}+1\right) \vec{i}+\left(4 \pi y^{3} \sin \left(\pi y^{4}\right)\right) \vec{j}
$$

along the curve $y=x^{4}$ from $(-1,1)$ to $(1,1)$.

