MCS 252 2010-2011 Spring
 Exercise Set I

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $f(x, y, z)=\frac{x^{2} \cos y}{z^{3}}$. Find ∇f.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $f(x, y)=\left(x^{2} y, x y^{3}, x^{4} y^{2}\right)$. Find $D f$.
3. Let

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 & (x, y)=(0,0)
\end{array}\right.
$$

Show that f is not differentiable at $(0,0)$ even though its partial derivatives exist everywhere.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $\varphi(r, s, t)=f(r s+r t, r s-r t)$. Find $D \varphi(1,2,1)$ if $\frac{\partial f}{\partial x}(3,1)=4$ and $\frac{\partial f}{\partial y}(3,1)=-5$.
5. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $F(x, y)=(u(x, y), v(x, y))$ and $G(s, t)=F\left(s^{2}+t^{2}, s^{2}-t^{2}\right)$. Find an expression for the differential matrix of G in terms of the partial derivatives of u and v.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
\left[\begin{array}{c}
s \\
t
\end{array}\right]=f\left(u_{1}, u_{2}\right)=\left[\begin{array}{c}
u_{1}^{2}+u_{2} \\
u_{1}+\sin u_{2}
\end{array}\right],
$$

and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=g\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{c}
x_{1} x_{2}+x_{3} \\
x_{1}+x_{2}^{2}
\end{array}\right] .
$$

Find $D(f \circ g)\left(x_{1}, x_{2}, x_{3}\right)$ where $f \circ g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},\left(x_{1}, x_{2}, x_{3}\right) \rightarrow(s, t)$.
7. Let $w=w\left(u_{1}, u_{2}, u_{3}\right)=u_{1}^{2}+u_{2}+u_{3}$ and

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=g(x, y, z)=\left[\begin{array}{c}
x+2 y z \\
x^{2}+y \\
x+z^{2}
\end{array}\right] .
$$

Find $\frac{\partial w}{\partial x}, \frac{\partial w}{\partial z}$.
8. Consider

$$
T:\left\{\begin{array}{l}
u(x, y)=x^{3} y+y \sin x \\
v(x, y)=\sin (x y+1)
\end{array} .\right.
$$

Near which points (x, y), can we solve x, y in terms of u, v ?
9. Compute $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial v}$ for the transformation given in Problem 8.
10. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be defined by

$$
T:\left\{\begin{array}{l}
u(x, y, z, t)=x+2 y+3 z+t^{2} \\
v(x, y, z, t)=x y t \\
w(x, y, z, t)=5 z^{2}+t \\
s(x, y, z, t)=3 y^{3}+t+x
\end{array} .\right.
$$

(a) Find $\operatorname{DT}(1,1,1,0)$.
(b) Can the system of equations be solved for x, y, z as functions of u, v, w near $(1,1,1,0)$?
(c) Find $\frac{\partial y}{\partial s}$ and $\frac{\partial t}{\partial v}$ at $q=(6,0,5,4)$.
11. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=\left(\ln x+y+1, y^{2} e^{x}\right)$ be given.
(a) Find $D T$.
(b) Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1}-class function and $h=S \circ T: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Find $D h$.
(c) Does the Inverse Function Theorem apply to T at the point $(1,1)$?
12. Let

$$
\left\{\begin{array}{l}
x^{2} u+y^{2}+3 v=0 \\
x+v^{3}+u^{2} y=0
\end{array}\right.
$$

be given.
(a) Are they uniquely solvable for u, v in terms of x and y, near $p_{0}=(1,1,1,1)$? near $p_{1}=$ $(0,0,0,1)$?
(b) Compute $\frac{\partial u}{\partial x}$ at $x=1, y=1$ if it exists.
(c) Compute $\frac{\partial v}{\partial y}$ at $x=1, y=1$ if it exists.
13. Let

$$
\left\{\begin{array}{l}
x^{2}+y z+u v=0 \\
x+u^{2}+v+5 w=0 \\
y+z+4 u+v^{3}-2 w+1=0
\end{array}\right.
$$

Discuss the solvability of u, v, w in terms of x, y, z near $p_{0}=(0,0,0,0,1,1)$. Find $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial x}$ at p_{0}.
14. Consider $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T:\left\{\begin{array}{l}
u(x, y, z)=x y z \\
v(x, y, z)=x^{2}+y-2 z \\
w(x, y, z)=3 x+4 y+z
\end{array} .\right.
$$

(a) Find a domain A for T such that T is locally invertible on A.
(b) Find $D T$.
(c) Find $\frac{\partial z}{\partial w}, \frac{\partial y}{\partial u}, \frac{\partial x}{\partial v}$ at $q=(1,0,8)$.
15. Is it possible to solve

$$
\begin{aligned}
x^{2} y+x z u^{2}-2 y v^{3} & =6 \\
x v+y z^{2} u^{2}-3 u v & =10
\end{aligned}
$$

for $u(x, y, z), v(x, y, z)$ near $(x, y, z)=(1,1,1),(u, v)=(1,-1)$? Compute $\frac{\partial v}{\partial y}$.
16. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y, u, v)=\left(x v^{2}+3 y+2 u^{3}, x-y v+v^{3}\right)$. At which points can we solve $T(x, y, u, v)$ for u, v in terms of x, y ? Compute $\frac{\partial u}{\partial x}$.
17. Let

$$
\begin{aligned}
x^{2}-y^{2}+2 z+u-3 v^{2} & =0 \\
5 y+z-u^{2}+4 w+16 & =0 \\
x+2 z-w+u^{2}+4 & =0 .
\end{aligned}
$$

Discuss the solvability of the system for u, v, w in terms of x, y, z near $p_{0}=(0,0,1,1,0,-1)$. Find $\frac{\partial u}{\partial x}\left(p_{0}\right)$ and $\frac{\partial v}{\partial y}\left(p_{0}\right)$.
18. Show that

$$
\begin{aligned}
u & =x+y \\
v & =x-z \\
w & =y^{2}+z^{2}-2 y z
\end{aligned}
$$

are functionally dependent.
19. Consider the pair of equations

$$
\begin{aligned}
& x^{2}+2 u x-y^{2}+3 v=0 \\
& x+4 y u+v^{2}+x^{2} v=0 .
\end{aligned}
$$

Find $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$.
20. Let x, y, u, v be related by the equations

$$
\begin{aligned}
x y+x^{2} u & =v y^{2} \\
3 x-4 u y & =x^{2} v .
\end{aligned}
$$

Find $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial y}$.

